Ranking with Recursive Neural Networks and Its Application to Multi-Document Summarization

نویسندگان

  • Ziqiang Cao
  • Furu Wei
  • Li Dong
  • Sujian Li
  • Ming Zhou
چکیده

We develop a Ranking framework upon Recursive Neural Networks (R2N2) to rank sentences for multi-document summarization. It formulates the sentence ranking task as a hierarchical regression process, which simultaneously measures the salience of a sentence and its constituents (e.g., phrases) in the parsing tree. This enables us to draw on word-level to sentence-level supervisions derived from reference summaries. In addition, recursive neural networks are used to automatically learn ranking features over the tree, with hand-crafted feature vectors of words as inputs. Hierarchical regressions are then conducted with learned features concatenating raw features. Ranking scores of sentences and words are utilized to effectively select informative and nonredundant sentences to generate summaries. Experiments on the DUC 2001, 2002 and 2004 multi-document summarization datasets show that R2N2 outperforms state-of-the-art extractive summarization approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A survey on Automatic Text Summarization

Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...

متن کامل

Extractive Text Summarization using Neural Networks

Text Summarization has been an extensively studied problem. Traditional approaches to text summarization rely heavily on feature engineering. In contrast to this, we propose a fully data-driven approach using feedforward neural networks for single document summarization. We train and evaluate the model on standard DUC 2002 dataset which shows results comparable to the state of the art models. T...

متن کامل

A Language Independent Algorithm for Single and Multiple Document Summarization

This paper describes a method for language independent extractive summarization that relies on iterative graph-based ranking algorithms. Through evaluations performed on a single-document summarization task for English and Portuguese, we show that the method performs equally well regardless of the language. Moreover, we show how a metasummarizer relying on a layered application of techniques fo...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

Systematic literature review of fuzzy logic based text summarization

Information Overloadrq  is not a new term but with the massive development in technology which enables anytime, anywhere, easy and unlimited access; participation & publishing of information has consequently escalated its impact. Assisting userslq    informational searches with reduced reading surfing time by extracting and evaluating accurate, authentic & relevant information are the primary c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015